

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

8636320979

COMBINED SCIENCE

0653/33

Paper 3 Theory (Core)

May/June 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

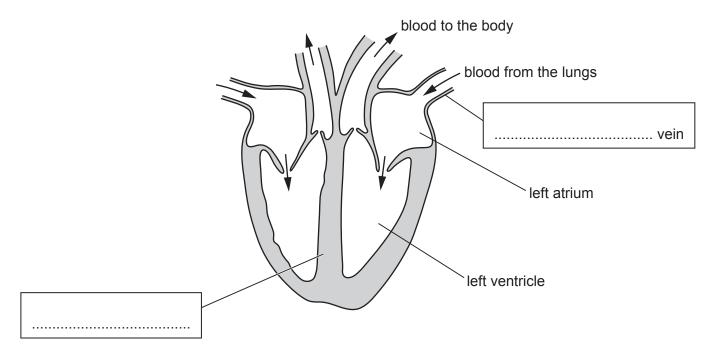
This document has 24 pages. Any blank pages are indicated.

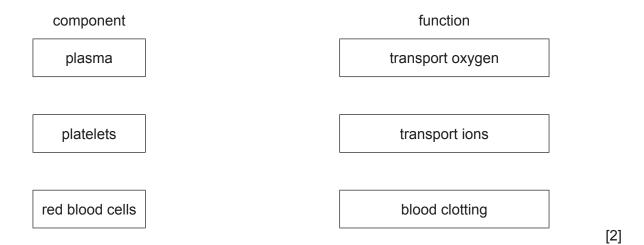
DC (PB/CB) 331072/3 © UCLES 2024

[Turn over

1 (a) Fig. 1.1 is a diagram of the human heart.

Complete the labels on Fig. 1.1.




Fig. 1.1

[2]

(b) The boxes on the left show different components of blood.

The boxes on the right show different functions of the components.

Draw **one** straight line from each component to its function.

- (c) Hormones are transported in the blood.
 - (i) Circle the words in **bold** that make this definition of hormones correct.

Hormones are chemical/electrical substances produced by a gland/vacuole.

They are carried in the blood and alter the activity of a specific **excretion/target** organ.

[2]

(ii) A patient is given an injection of the hormone adrenaline.

The doctor measures the patient's pulse rate before and after the injection.

Table 1.1 shows the results.

Table 1.1

pulse rate before injection /beats per minute	pulse rate after injection /beats per minute
70	91

Calculate the percentage increase in pulse rate using the results from Table 1.1.

	percentage increase =% [2]
(iii)	State one other effect of adrenaline on the body.
	[1]
	[Total: 9]

- 2 A student investigates the reactions of iron using iron nails.
 - (a) The student places an iron nail into water, as shown in Fig. 2.1.

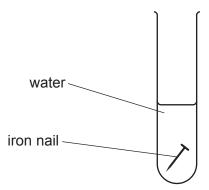


Fig. 2.1

(i) Water is needed for iron to rust.

State one other substance needed for iron to rust.

.....[1]

(ii) Suggest one method used to stop iron nails rusting.

.....[1]

(b) In another experiment, the student compares the rates of reaction of iron and three other metals with dilute hydrochloric acid.

The student places equal-sized pieces of the four metals in dilute hydrochloric acid of the same concentration at the same temperature. Then the student collects the gas produced for 2 minutes, as shown in Fig. 2.2.

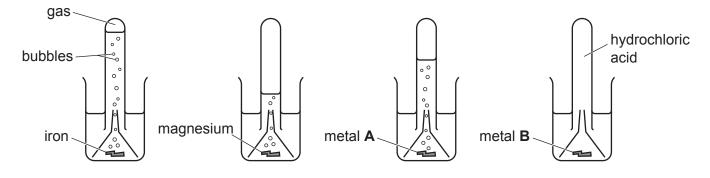


Fig. 2.2

(i) Identify the gas produced in the reactions shown in Fig. 2.2.

.....[1]

	(ii)	Suggest the identity of metal A and the identity of metal B .
		Explain your answer.
		metal A
		metal B
		explanation
		[3]
((iii)	Suggest one change to increase the rate of the reaction of iron with dilute hydrochloric acid.
		[1]
(c)	An a	atom of iron is represented as shown.
		⁵⁶ Fe
	Dec	luce the number of protons, neutrons and electrons in this atom.
		number of protons =
		number of neutrons =
		number of electrons =
		[2]
		[Total: 9]

3 Fig. 3.1 shows three forces, **Q**, **R** and **S**, acting on a bus moving along a level road at constant speed.

direction of travel

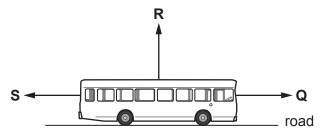


Fig. 3.1

(a)	The	The gravitational force acting on the bus is not shown on Fig. 3.1.								
	(i)	On Fig. 3.1, draw an arrow to represent the gravitational force acting on the bus a label it ${\bf P}$.	and [1							
	(ii)	State the name of the gravitational force P .								

(b) The driving force **Q** of the bus is 2500 N as it moves.

(ii) Force ${\bf Q}$ is increased to 3000 N. Force ${\bf S}$ does not change.

Find the resultant of the forces ${\bf Q}$ and ${\bf S}$ acting on the bus.

resultant =N [1]

(iii) Describe the effect on the motion of the bus of the resultant force in (b)(ii).

.....[1]

(c) Fig. 3.2 shows a speed–time graph of the motion of a bus between two bus stops.

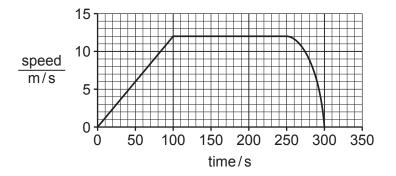


Fig. 3.2

(i)	Determine the	speed of the	bus when it is	s travelling at	constant speed.
-----	---------------	--------------	----------------	-----------------	-----------------

speed = m/s [1]

(ii) Determine the time when the bus begins to decelerate and the time when it ends decelerating.

begins at time =s

ends at time =s

[1]

(d) The bus uses batteries to supply energy to the electric motors that drive the wheels of the bus.

Complete the sentence by identifying the energy transfers that happen when the bus is moving. One has been done for you.

Energy is transferred from potential energy in the batteries

to electrical energy in the motors and then to

energy of the motors and the moving bus.

[2]

[Total: 9]

4 (a) Fig. 4.1 shows some of the parts of an insect-pollinated flower.

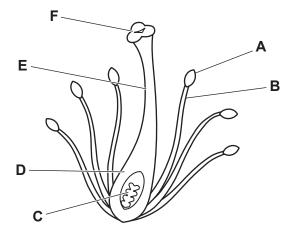
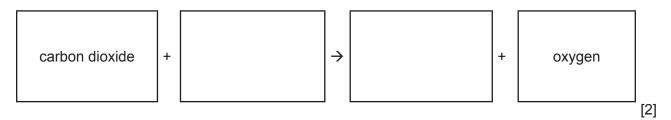



Fig. 4.1

	(i)	State the letter on Fig. 4.1 that identifies:	
		an ovule	
		where pollination occurs.	 [2]
	(ii)	Fig. 4.1 does not show the sepals and petals of the flower.	
		State the function of:	
		sepals	
		petals.	[2]
(b)	An	animal gets its energy by eating only plants.	
	Sta	te the term that describes this type of animal.	
			[1]

- (c) Plants use carbon dioxide for photosynthesis.
 - (i) Complete the word equation for photosynthesis.

(ii) Fig. 4.2 is a graph showing the effect of carbon dioxide concentration on the rate of photosynthesis.

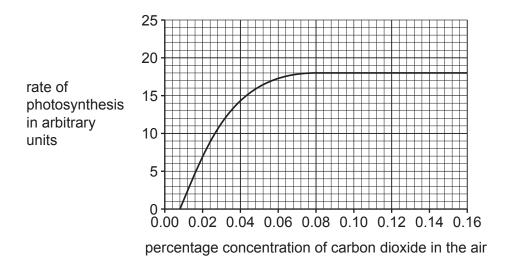


Fig. 4.2

Describe the effect of increasing carbon dioxide concentration on the rate of photosynthesis shown in Fig. 4.2.

nclude data in your answer.
[2]

(d) Deforestation causes an increase in carbon dioxide concentration in the atmosphere.

State two other undesirable effects of deforestation.

1	
2	
_	[2]

[Total: 11]

5 Part of the Periodic Table is shown in Fig. 5.1.

Group								
- 1	Ш		Ш	IV	V	VI	VII	VIII
		Н						Не
Li	Ве		В	С	N	0	F	Ne
Na	Mg		Αl	Si	Р	S	Cl	Ar
K	Са	Sc Ti V Cr Mn Fe Co Ni Cu Zn	Ga	Ge	As	Se	Br	Kr

Fig. 5.1

(:	a)	(i)	Draw one	straight line to	o show the	trend in	metallic cha	racter across	a period
10	a,	(1)	Diaw One	Sualyni iine i	o show the	ti Ci iu ii i	metanic cha	Tactel across	a penou.

decreases across a period from left to right metallic increases across a period character from left to right stays the same across a period from left to right [1] State the name of the collection of metals that includes iron, Fe, and copper, Cu. (ii) (b) Lithium, Li, sodium, Na, and potassium, K, are in Group I of the Periodic Table. State the trend in the melting point and the trend in the reaction with water of these elements going down Group I. melting point reaction with water

[2]

(c) Sodium, Na, reacts with fluorine, F, to form sodium fluoride.

Fig. 5.2 shows the electronic structure of a sodium atom and of a fluorine atom.

Fig. 5.2

When sodium atoms react with fluorine atoms, sodium ions and fluoride ions form.

Complete the dot-and-cross diagrams in Fig. 5.3 to show all of the electrons in a sodium ion and in a fluoride ion.

Fig. 5.3

[2]

(d) The electronic structure of an atom of element ${\bf Z}$ is shown in Fig. 5.4.

Fig. 5.4

(i)	Use the Periodic Table to identify element Z .	
		[1]
(ii)	Sodium and element Z do not easily form a compound together.	
	Use the electronic structure shown in Fig. 5.4 to explain this observation.	
		[2]
		[Total: 9]

BLANK PAGE

						_
6	The	list	shows	some	types	of wave.

	i	infrared waves	microwaves	radio waves	
	SO	und waves	visible light waves	water waves	
(a)	Cho	ose types of wave from	the list to answer these que	stions.	
	Eac	h wave may be used or	ice, more than once or not at	all.	
	(i)	State the type of wave	used in intruder alarms.		
					[1]
	(ii)	State two types of wav	e that are not part of the ele	ctromagnetic spectrum.	
		1			
		2			
	/:::\	Otata the time of ways		was a wide the classest from some	[2]
	(iii)	•	-	wave with the lowest frequency.	
<i>a</i> ,					[1]
(b)		air temperature is 15°C			
				urce to a person hearing the soun	ıd.
	The	speed of sound in air a	t 15°C is 340 m/s.		
	(i)	Show that the distance	of the person from the source	ce is 884 m.	
					[1]
	(ii)	The speed of sound in	air increases as the tempera	ture of the air increases.	
		At 35 °C the speed of s	ound in air is 352 m/s.		
		Estimate the speed of	sound at 25 °C.		

speed = m/s [1]

State the equation used to calculate the density of a substance from known values of mass and volume.	(i)	(c)
[1]		
Explain why the density of air decreases when the temperature of air increases.	(ii)	
[2]		
[Total: 9]		

7 (a) Table 7.1 shows information about some fruits.

Table 7.1

fruit	mass of nutrient per 100 g of fruit /g										
	carbohydrate	protein	fat	fibre							
apple	13.8	0.3	0.2	2.4							
avocado	8.5	2.0	15.0	6.7							
blueberry	14.5	0.7	0.3	2.4							
orange	13.0	0.9	0.1	2.2							
strawberry	7.7	0.7	0.3	2.0							

(i)	Identify two fruits with identical fat content per 100g of fruit.	
	and	[1]
(ii)	Eating fruit helps the movement of food through the alimentary canal.	
	Explain why avocados are the best fruit in Table 7.1 to eat for this process.	
		[1]
(iii)	A student mixes 20 g of crushed avocado into a biuret solution. After 5 minutes the biuret solution changes colour.	
	Use Table 7.1 to explain this observation.	
		[0]

(b) Complete these sentences about the digestion of food in the alimentary canal.Choose words from the list.

Each word may be used once, more than once or not at all.

absorption	egestion	ingestion
insoluble	osmosis	soluble
Food is taken into the mouth by	the process of	
Digestion breaks down large		food molecules into
small water	food molecules	
The small molecules then move	e through the wall of the	intestine by the process of

[Total: 7]

[3]

8	(a) The	e fossil fuel petroleum is a liquid mixture of hydrocarbons.
	(i)	Complete the sentence about hydrocarbons.
		Hydrocarbons are molecules that contain and only. [1]
	(ii)	Describe the arrangement and motion of particles in a liquid.
		arrangement
		motion
		[2]
	(iii)	Explain why the change in state from a liquid to a gas is described as a physical change.
	(/	
		[1]
	(b) Ad	iagram of the equipment used to separate petroleum is shown in Fig. 8.1.
		column
		petroleum
		Fig. 8.1
	Sta	te the name of the separation process that uses this equipment.
		[1]

(c)	Ethe	ene is an unsaturated hydrocarbon.	
	(i)	Describe what is meant by unsaturated.	
		[[1]
	(ii)	Naphtha is obtained from petroleum.	
		Naphtha undergoes a process to produce ethene.	
		State the name of the process that produces ethene from naphtha.	
		[[1]
	(iii)	State the name of the type of chemical reaction that changes ethene into poly(ethene)	
		[[1]
		[Total:	8]

9 Fig. 9.1 shows a circuit containing two identical lamps.

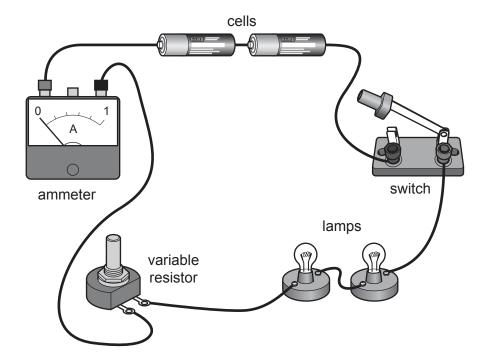


Fig. 9.1

- (a) The variable resistor is at its minimum resistance and the voltage across the battery is 3.1 V.

 When the switch is closed, both lamps are brightly lit.
 - (i) The ammeter reads 0.55A.

Calculate the total resistance of the circuit.

Give the unit of your answer.

		[0]
resistance =	unit	[3]

(ii) When the variable resistor is at minimum resistance, its resistance is zero.

Use your answer to (a)(i) to calculate the value of the resistance of each lamp.

resistance = [1]

(b)	The	circuit remains switched on for a long time. The lamps become less bright.
	(i)	Predict what happens to the reading on the ammeter during this time.
		[1]
	(ii)	The lamps become less bright because the cells are 'running down' and need replacing.
		Suggest what measurement is made to check that the cells are 'running down'.
		[1]
(c)	On	Fig. 9.2, complete the circuit diagram for the circuit shown in Fig. 9.1.

Fig. 9.2

[3]

[Total: 9]

BLANK PAGE

0653/33/M/J/24

© UCLES 2024

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

ts
ents
Ĕ
<u>a</u>
Ш
of Eleme
<u>o</u>
9
Table
o Si Si
0
<u>.0</u>
Peric
Δ
The
\vdash

	III/	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	25	Xe	xenon 131	98	R	radon	118	Og	oganesson -
	II/			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ä	bromine 80	53	Н	iodine 127	85	At	astatine -	117	<u>⊳</u>	tennes sine -
				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Б	tellurium 128	84	Ро	polonium –	116		livermorium -
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209	115	Mc	moscovium -
	2			9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ъ	lead 207	114	Εl	flerovium —
	≡			2	Ф	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	l_	thallium 204	113	R	nihonium —
										30	Zu	zinc 65	48	<u>В</u>	cadmium 112	80	РĜ	mercury 201	112	C	copernicium —
										29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
Group										28	Ë	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
ğ										27	රි	cobalt 59	45	몬	rhodium 103	77	'n	iridium 192	109	Μţ	meitnerium -
		- エ	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium –
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
				_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	14	qN	niobium 93	73	<u>Б</u>	tantalum 181	105	Op	dubnium -
					atc	re				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	짶	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ba	barium 137	88	Ra	radium -
	_			က	=	lithium 7	£	Na	sodium 23	19	¥	potassium 39	37	ВВ	rubidium 85	55	S	caesium 133	87	ъ́	francium -

71	3	lutetium 175	103	۲	lawrencium	I
70	Υp	ytterbium 173	102	%	nobelium	1
69	Tm	thulium 169	101	Md	mendelevium	ı
89	Щ	erbium 167	100	Fm	fermium	I
29	웃	holmium 165	66	Es	einsteinium	I
99	۵	dysprosium 163	86	ŭ	californium	I
65	Д	terbium 159	97	Ř	berkelium	I
64	Gd	gadolinium 157	96	Cm	curium	I
63	En	europium 152	92	Am	americium	I
62	Sm	samarium 150	94	Pn	plutonium	I
61	Pm	promethium -	93	d d	neptunium	I
09	ρN	neodymium 144	92	\supset	uranium	238
59	P	praseodymium 141	91	Ра	protactinium	231
58	Ce	cerium 140	06	드	thorium	232
22	Га	lanthanum 139	88	Ac	actinium	-

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).